The Convective Instability Pathway to Warm Season Drought in Texas. Part II: Free-Tropospheric Modulation of Convective Inhibition
Document Type
Article
Publication Date
2010
Abstract
This study is concerned with the modulation by convective instability of summertime precipitation in Texas as a mechanism for maintaining or enhancing drought. The important role of convective inhibition (CIN), its dependence on the temperature at 700 hPa and the surface dewpoint, and the mechanism by which soil moisture modulates precipitation through CIN were described in Part I of this two-part series study. This study, Part II, examines the dynamic and physical processes controlling the temperature at 700 hPa and elucidates the large-scale influences on convective instability and precipitation integrating the principal processes found in both Parts I and II.
Back-trajectory analysis indicates that a significant contributor to warming at 700 hPa is the inversion caused by warm air transport from the Rocky Mountains and the Mexican Plateau where the surface potential temperature is greater than 307.5 K, rather than by subsidence. It was found that downward motion and warm air transport are enhanced in Texas when an upper-level anticyclonic circulation develops in the southern United States.
Upper-level anticyclonic circulations in the southern United States, one of the distinctive features of central U.S. droughts, strongly affect Texas summertime precipitation by modulating the thermodynamic structure of the atmosphere and thus convective instability. Stationary anticyclonic anomalies increase CIN not only by enhancing warm air transport from the high terrain but also by suppressing the occurrence of traveling disturbances. The resulting reduced precipitation and dry soil significantly modulate surface conditions, which elevates CIN and decreases precipitation. The aforementioned chain reaction of upper-level anticyclone influences that is expected to play an important role in initiating and maintaining Texas summer droughts can be understood within the context of CIN.
Recommended Citation
Boksoon Myoung and John W. Nielsen-Gammon, 2010: The Convective Instability Pathway to Warm Season Drought in Texas. Part II: Free-Tropospheric Modulation of Convective Inhibition.J. Climate, 23, 4474–4488. doi: http://dx.doi.org/10.1175/2010JCLI2947.1
Peer Reviewed
1
Copyright
© Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyrights@ametsoc.org.
Comments
This article was originally published in Journal of Climate, volume 23, in 2010. DOI: 10.1175/2010JCLI2947.1