Document Type

Article

Publication Date

2014

Abstract

The main objective of this paper (the second of two parts) is to show that quasioperators can be dealt with smoothly in the topological duality established in Part I. A quasioperator is an operation on a lattice that either is join preserving and meet reversing in each argument or is meet preserving and join reversing in each argument. The paper discusses several common examples, including orthocomplementation on the closed subspaces of a fixed Hilbert space (sending meets to joins), modal operators auS and a- on a bounded modal lattice (preserving joins, resp. meets), residuation on a bounded residuated lattice (sending joins to meets in the first argument and meets to meets in the second). This paper introduces a refinement of the topological duality of Part I that makes explicit the topological distinction between the duals of meet homomorphisms and of join homomorphisms. As a result, quasioperators can be represented by certain continuous maps on the topological duals.

Comments

This is a working paper version of an article accepted for publication in Algebra Universalis, volume 71, issue 3, 2014 following peer review and copy-editing. The final publication is available at Springer at DOI: 10.1007/s00012-014-0275-2.

Peer Reviewed

1

Copyright

Springer

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.