Document Type
Article
Publication Date
2007
Abstract
The effect of the endogenous cannabinoid anandamide on K+ currents activated by the ATP-sensitive potassium (KATP) channel opener cromakalim was investigated in follicle-enclosed Xenopus oocytes using the two-electrode voltage-clamp technique. Anandamide (1–90 μM) reversibly inhibited cromakalim-induced K+ currents, with an IC50 value of 8.1 ± 2 μM. Inhibition was noncompetitive and independent of membrane potential. Coapplication of anandamide with the cannabinoid type 1 (CB1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) (1 μM), the CB2 receptor antagonist N-[(1S)endo-1,3,3-trimethyl bicyclo heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) (1 μM), or pertussis toxin (5 μg/ml) did not alter the inhibitory effect of anandamide, suggesting that known cannabinoid receptors are not involved in anandamide inhibition of K+ currents. Similarly, neither the amidohydrolase inhibitor phenylmethylsulfonyl fluoride (0.2 mM) nor the cyclooxygenase inhibitor indomethacin (5 μM) affected anandamide inhibition of K+ currents, suggesting that the effects of anandamide are not mediated by its metabolic products. In radioligand binding studies, anandamide inhibited the specific binding of the KATP ligand [3H]glibenclamide in the oocyte microsomal fractions, with an IC50 value of 6.3 ± 0.4 μM. Gonadotropin-induced oocyte maturation and the cromakalim-acceleration of progesterone-induced oocyte maturation were significantly inhibited in the presence of 10 μM anandamide. Collectively, these results indicate that cromakalim-activated K+ currents in follicular cells of Xenopus oocytes are modulated by anandamide via a cannabinoid receptor-independent mechanism and that the inhibition of these channels by anandamide alters the responsiveness of oocytes to gonadotropin and progesterone.
Recommended Citation
Oz, Murat, et al. "The endogenous cannabinoid anandamide inhibits cromakalim-activated K+ currents in follicle-enclosed Xenopus oocytes." Journal of Pharmacology and Experimental Therapeutics 323.2 (2007): 547-554.
doi: 10.1124/jpet.107.125336
Peer Reviewed
1
Copyright
U.S. Government work not protected by U.S. copyright
Comments
This article was originally published in Journal of Pharmacology and Experimental Therapeutics, volume 323, issue 2, in 2007. DOI: 10.1124/jpet.107.125336