Document Type

Article

Publication Date

9-27-2024

Abstract

Previous work established fundamental bounds on subwavelength resolution for the radar range resolution problem, called superradar [Phys. Rev. Appl. 20, 064046 (2023)]. In this work, we identify the optimal waveforms for distinguishing the range resolution between two reflectors of identical strength, leveraging results in quantum metrology. We discuss both the unnormalized optimal waveform as well as the best square-integrable pulse and their variants. Using orthogonal function theory, we give an explicit algorithm to optimize the wave pulse in finite time to have the best performance. We also explore range resolution estimation with unnormalized waveforms with multiparameter methods to also independently estimate loss and time of arrival. These results are consistent with the earlier single parameter approach of range resolution only and give deeper insight into the ranging estimation problem. Experimental results are presented using radio pulse reflections inside coaxial cables, showing robust range resolution smaller than a tenth of the inverse bandlimit, with uncertainties close to the derived Cramér-Rao bound.

Comments

This article was originally published in Physical Review Research, volume 6, in 2024. https://doi.org/10.1103/PhysRevResearch.6.033341

Peer Reviewed

1

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.