Document Type

Article

Publication Date

7-30-2024

Abstract

In this paper we investigate new results on the theory of superoscillations using time-frequency analysis tools and techniques such as the short-time Fourier transform (STFT) and the Zak transform. We start by studying how the short-time Fourier transform acts on superoscillation sequences. We then apply the supershift property to prove that the short-time Fourier transform preserves the superoscillatory behavior by taking the limit. It turns out that these computations lead to interesting connections with various features of time-frequency analysis such as Gabor spaces, Gabor kernels, Gabor frames, 2D-complex Hermite polynomials, and polyanalytic functions. We treat different cases depending on the choice of the window function moving from the general case to more specific cases involving the Gaussian and the Hermite windows. We consider also an evolution problem with an initial datum given by superoscillation multiplied by the time-frequency shifts of a generic window function. Finally, we compute the action of STFT on the approximating sequences with a given Hermite window.

Comments

This article was originally published in Applied and Computational Harmonic Analysis, volume 73, in 2024. https://doi.org/10.1016/j.acha.2024.101689

Peer Reviewed

1

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.