Document Type

Article

Publication Date

7-3-2024

Abstract

Recently, handling of contextual sets, in particular Kochen-Specker (KS) sets, in higher dimensions has been given an increasing attention, both theoretically and experimentally. However, methods of their generation are diverse, not generally applicable in every dimension, and of exponential complexity. Therefore, we design a dimensional upscaling method, whose complexity does not scale with dimension. As a proof of principle we generate manageable-sized KS master sets in up to 27 dimensional spaces and show that well over 32 dimensions can be reached. From these master sets we obtain an ample number of smaller KS sets. We discuss three kinds of applications that work with KS sets in higher dimensions. We anticipate other applications of KS sets for quantum information processing that make use of large families of nonisomorphic KS sets.

Comments

This article was originally published in Physical Review A, volume 110, in 2024. https://doi.org/10.1103/PhysRevA.110.012205

Peer Reviewed

1

Copyright

American Physical Society

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.