Quasi-Menger and Weakly Menger Frames
Document Type
Article
Publication Date
2022
Abstract
We study the quasi-Menger and weakly Menger properties in locales. Our definitions, which are adapted from topological spaces by replacing subsets with sublocales, are conservative in the sense that a topological space is quasi-Menger (resp. weakly Menger) if and only if the locale it determines is quasi-Menger (resp. weakly Menger). We characterize each of these types of locales in a language that does not involve sublocales. Regarding localic results that have no topological counterparts, we show that an infinitely extremally disconnected locale (in the sense of Arietta [1]) is weakly Menger if and only if its smallest dense sublocale is weakly Menger. We show that if the product of locales is quasi-Menger (or weakly Menger) then so is each factor. Even though the localic product Πj∈JΩ(Xj) is not necessarily isomorphic to the locale Ω(Πj∈JXj), we are able to deduce as a corollary of the localic result that if the product of topological spaces is weakly Menger, then so is each factor.
Recommended Citation
T. E. Bayih, T. Dube & O. Ighedo: Quasi-Menger and Weakly Menger locales. Filomat, 36:18 (2022), 6375 - 6392. https://doi.org/10.2298/FIL2218375B
Peer Reviewed
1
Comments
This article was originally published in Filomat, volume 36, issue 18, in 2022. https://doi.org/10.2298/FIL2218375B