"Identification of Subtypes of Post-Stroke and Neurotypical Gait Behavi" by Andrian Kuch, Nicolas Schweighofer et al.
 

Document Type

Conference Proceeding

Publication Date

5-8-2025

Abstract

Gait impairment post-stroke is highly heterogeneous. Prior studies classified heterogeneous gait patterns into subgroups using peak kinematics, kinetics, or spatiotemporal variables. A limitation of this approach is the need to select discrete features in the gait cycle. Using continuous gait cycle data, we accounted for differences in magnitude and timing of kinematics. Here, we propose a machine-learning pipeline combining supervised and unsupervised learning. We first trained a Convolutional Neural Network and a Temporal Convolutional Network to extract features that distinguish impaired from neurotypical gait. Then, we used unsupervised time-series k-means and Gaussian Mixture Models to identify gait clusters. We tested our pipeline using kinematic data of 28 neurotypical and 39 individuals post-stroke. We assessed differences between clusters using ANOVA. We identified two neurotypical gait clusters (C1, C2). C1: normative gait pattern. C2: shorter stride time. We observed three post-stroke gait clusters (S1, S2, S3). S1: mild impairment and increased bilateral knee flexion during loading response. S2: moderate impairment, slow speed, short steps, increased knee flexion during stance bilaterally, and reduced paretic knee flexion during swing. S3: mild impairment, asymmetric swing time, increased ankle abduction during the gait cycle, and reduced dorsiflexion bilaterally. Our results indicate that joint kinematics post-stroke are mostly distinct from controls, and highlight kinematic impairments in the non-paretic limb. The post-stroke clusters showed distinct impairments that would require different interventions, providing additional information for clinicians about rehabilitation targets.

Comments

This article was originally published in IEEE Transactions on Neural Systems and Rehabilitation Engineering, volume 33, in 2025. https://doi.org/10.1109/TNSRE.2025.3568325

Peer Reviewed

1

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Usage
    • Downloads: 15
    • Abstract Views: 3
  • Captures
    • Readers: 2
  • Mentions
    • News Mentions: 1
see details

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.