Document Type
Article
Publication Date
1-12-2020
Abstract
A histological ground-section from a duck-billed dinosaur nestling (Hypacrosaurus stebingeri) revealed microstructures morphologically consistent with nuclei and chromosomes in cells within calcified cartilage. We hypothesized that this exceptional cellular preservation extended to the molecular level and had molecular features in common with extant avian cartilage. Histochemical and immunological evidence supports in situ preservation of extracellular matrix components found in extant cartilage, including glycosaminoglycans and collagen type II. Furthermore, isolated Hypacrosaurus chondrocytes react positively with two DNA intercalating stains. Specific DNA staining is only observed inside the isolated cells, suggesting endogenous nuclear material survived fossilization. Our data support the hypothesis that calcified cartilage is preserved at the molecular level in this Mesozoic material, and suggest that remnants of once-living chondrocytes, including their DNA, may preserve for millions of years.
Recommended Citation
Alida M Bailleul, Wenxia Zheng, John R Horner, Brian K Hall, Casey M Holliday, Mary H Schweitzer, Evidence of proteins, chromosomes and chemical markers of DNA in exceptionally preserved dinosaur cartilage, National Science Review, Volume 7, Issue 4, April 2020, Pages 815–822, https://doi.org/10.1093/nsr/nwz206
Peer Reviewed
1
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
This article was originally published in National Science Review, volume 7, issue 4, in 2020. https://doi.org/10.1093/nsr/nwz206