Document Type

Article

Publication Date

12-5-2018

Abstract

Recent discussions on Fregean and neo-Fregean foundations for arithmetic and real analysis pay much attention to what is called either ‘Application Constraint’ ( ) or ‘Frege Constraint’ ( ), the requirement that a mathematical theory be so outlined that it immediately allows explaining for its applicability. We distinguish between two constraints, which we, respectively, denote by the latter of these two names, by showing how generalizes Frege’s views while comes closer to his original conceptions. Different authors diverge on the interpretation of and on whether it applies to definitions of both natural and real numbers. Our aim is to trace the origins of and to explore how different understandings of it can be faithful to Frege’s views about such definitions and to his foundational program. After rehearsing the essential elements of the relevant debate (§1), we appropriately distinguish from (§2). We discuss six rationales which may motivate the adoption of different instances of and (§3). We turn to the possible interpretations of (§4), and advance a Semantic (§4.1), arguing that while it suits Frege’s definition of natural numbers (4.1.1), it cannot reasonably be imposed on definitions of real numbers (§4.1.2), for reasons only partly similar to those offered by Crispin Wright (§4.1.3). We then rehearse a recent exchange between Bob Hale and Vadim Batitzky to shed light on Frege’s conception of real numbers and magnitudes (§4.2). We argue that an Architectonic version of is indeed faithful to Frege’s definition of real numbers, and compatible with his views on natural ones. Finally, we consider how attributing different instances of to Frege and appreciating the role of the Architectonic can provide a more perspicuous understanding of his foundational program, by questioning common pictures of his logicism (§5).

Comments

This article was originally published in Review of Symbolic Logic, volume 12, issue 1, in 2019. DOI: 10.1017/S1755020318000278

Peer Reviewed

1

Copyright

Cambridge University Press

Available for download on Thursday, December 05, 2019

Share

COinS