Document Type
Article
Publication Date
9-21-2021
Abstract
We report here the synthesis, purification, and characterization of mono- and di-fatty acyl conjugates of remdesivir (RDV) and their in vitro antiviral activity against SAR-CoV-2, an Ebola virus transcription- and replication-competent virus-like particle (trVLP) system, and infectious Ebola virus. The most potent monofatty acyl conjugate was 4b, containing a 4-oxatetradecanolyl at the 3′ position. Monofatty acyl conjugates, 3′-O-tetradecanoyl (4a) (IC50(VeroE6) = 2.3 μM; IC50(Calu3) = 0.24 μM), 3′-O-4-oxatetradodecanoyl (4b) (IC50(VeroE6) = 2.0 μM; IC50(Calu3) = 0.18 μM), and 3′-O-(12-ethylthiododecanoyl) (4e) (IC50(VeroE6) = 2.4 μM; IC50(Calu3) = 0.25 μM) derivatives exhibited less activity than RDV (IC50(VeroE6) = 0.85 μM; IC50(Calu3) = 0.06 μM) in both VeroE6 and Calu3 cells. Difatty acylation led to a significant reduction in the antiviral activity of RDV (as shown in conjugates 5a and 5b) against SARS-CoV-2 when compared with monofatty acylation (3a-e and 4a-e). About 77.9% of 4c remained intact after 4 h incubation with human plasma while only 47% of parent RDV was observed at the 2 h time point. The results clearly indicate the effectiveness of fatty acylation to improve the half-life of RDV. The antiviral activities of a number of monofatty acyl conjugates of RDV, such as 3b, 3e, and 4b, were comparable with RDV against the Ebola trVLP system. Meanwhile, the corresponding physical mixtures of RDV and fatty acids 6a and 6b showed 1.6 to 2.2 times less antiviral activity than the corresponding conjugates, 4a and 4c, respectively, against SARS-CoV-2 in VeroE6 cells. A significant reduction in viral RNA synthesis was observed for selected compounds 3a and 4b consistent with the IC50 results. These studies indicate the potential of these compounds as long-acting antiviral agents or prodrugs of RDV.
Recommended Citation
El-Sayed NS, Jureka AS, Edwards MR, et al. Synthesis and antiviral activity of fatty acyl conjugates of remdesivir against severe acute respiratory syndrome coronavirus 2 and Ebola virus. Eur J Med Chem. 2021;226:113862. https://doi.org/10.1016/j.ejmech.2021.113862
Copyright
Elsevier
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Comments
NOTICE: this is the author’s version of a work that was accepted for publication in European Journal of Medicinal Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in European Journal of Medicinal Chemistry, volume 226, in 2021. https://doi.org/10.1016/j.ejmech.2021.113862
The Creative Commons license below applies only to this version of the article.
This scholarship is part of the Chapman University COVID-19 Archives.