Document Type
Article
Publication Date
6-16-2020
Abstract
Primary cilia are shown to have membrane swelling, also known as ciliary bulbs. However, the role of these structures and their physiological relevance remains unknown. Here, it is reported that a ciliary bulb has extracellular vesicle (EV)‐like characteristics. The ciliary extracellular‐like vesicle (cELV) has a unique dynamic movement and can be released by mechanical fluid force. To better identify the cELV, differential multidimensional proteomic analyses are performed on the cELV. A database of 172 cELV proteins is generated, and all that examined are confirmed to be in the cELV. Repressing the expression of these proteins in vitro and in vivo inhibits cELV formation. In addition to the randomized heart looping, hydrocephalus, and cystic kidney in fish, compensated heart contractility is observed in both fish and mouse models. Specifically, low circulation of cELV results in hypotension with compensated heart function, left ventricular hypertrophy, cardiac fibrosis, and arrhythmogenic characteristics, which result in a high mortality rate in mice. Furthermore, the overall ejection fraction, stroke volume, and cardiac output are significantly decreased in mice lacking cELV. It is thus proposed that the cELV as a nanocompartment within a primary cilium plays an important role in cardiovascular functions.
Recommended Citation
Mohieldin AM, Pala R, Sherpa RT, et al. Proteomic identification reveals the role of ciliary extracellular‐like vesicle in cardiovascular function. Adv. Sci. 2020. https://doi.org/10.1002/advs.201903140
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Amino Acids, Peptides, and Proteins Commons, Animal Experimentation and Research Commons, Cardiovascular Diseases Commons, Cell Anatomy Commons, Cell Biology Commons
Comments
This article was originally published in Advanced Science in 2020. https://doi.org/10.1002/advs.201903140