Document Type

Article

Publication Date

4-17-2019

Abstract

A number of amphiphilic cyclic peptides—[FR]4, [WR]5, and [WK]5—containing hydrophobic and positively-charged amino acids were synthesized by Fmoc/tBu solid-phase peptide methods and evaluated for their efficiency in intracellular delivery of siRNA to triple-negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468, in the presence and absence of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Among the peptides, [WR]5, which contains alternate tryptophan (W) and arginine (R) residues, was found to be the most efficient in the delivery of siRNA by improving the delivery by more than 3-fold when compared to other synthesized cyclic peptides that were not efficient. The data also showed that co-formulation of [WR]5 with lipid DOPE significantly enhanced the efficiency of siRNA delivery by up to ~2-fold compared to peptide alone. Based on the data indicating the efficiency of [WR]5 in siRNA delivery, peptides containing arginine residues on the ring and tryptophan residues on the side chain, [R6K]W6 and [R5K]W5, were also evaluated, and demonstrated improved delivery of siRNA. The presence of DOPE again enhanced the siRNA delivery in most cases. [WR]5, [R5K]W5, and [R6K]W6 did not show any significant toxicity in MDA-MB-231, MDA-MB-468, and AU565 WT cells at N/P ratios of 20:1 or less, in the presence and absence of DOPE. Silencing of kinesin spindle protein (KSP) and Janus kinase 2 (JAK2) was evaluated in MDA-MB-231 cells in the presence of the peptides. The addition of DOPE significantly enhanced the silencing efficiency for all selected peptides. In conclusion, peptides containing typtophan and arginine residues were found to enhance siRNA delivery and to generate silencing of targeted proteins in the presence of DOPE.

Comments

This article was originally published in Polymers, volume 11, in 2019. DOI: 10.3390/polym11040703

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.