Document Type
Article
Publication Date
4-23-2013
Abstract
Class IIa bacteriocins are potent antimicrobial peptides produced by lactic acid bacteria to destroy competing microorganisms. The N-terminal domain of these peptides consists of a conserved YGNGV sequence and a disulphide bond. The YGNGV motif is essential for activity, whereas, the two cysteines involved in the disulphide bond can be replaced with hydrophobic residues. The C-terminal region has variable sequences, and folds into a conserved amphipathic α-helical structure. To elucidate the structure–activity relationship in the N-terminal domain of these peptides, three analogues (1–3) of a class IIa bacteriocin, Leucocin A (LeuA), were designed and synthesized by replacing the N-terminal β-sheet residues of the native peptide with shorter β-turn motifs. Such replacement abolished the antibacterial activity in the analogues, however, analogue 1 was able to competitively inhibit the activity of native LeuA. Native LeuA (37-mer) was synthesized using native chemical ligation method in high yield. Solution conformation study using circular dichroism spectroscopy and molecular dynamics simulations suggested that the C-terminal region of analogue 1 adopts helical folding as found in LeuA, while the N-terminal region did not fold into β-sheet conformation. These structure–activity studies highlight the role of proper folding and complete sequence in the activity of class IIa bacteriocins.
Recommended Citation
Bodapati K, Soudy R, Etayash H, Stiles M, Kaur K. Design, synthesis and evaluation of antimicrobial activity of N-terminal modified leucocin A analogues. Bioorg. Med. Chem. 2013;21(13):3715-3722. doi: 10.1016/j.bmc.2013.04.045
Copyright
Elsevier
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Included in
Amino Acids, Peptides, and Proteins Commons, Chemical and Pharmacologic Phenomena Commons, Medical Biochemistry Commons, Medicinal and Pharmaceutical Chemistry Commons, Other Pharmacy and Pharmaceutical Sciences Commons
Comments
NOTICE: this is the author’s version of a work that was accepted for publication in Bioorganic & Medicinal Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Bioorganic & Medicinal Chemistry, volume 21, issue 13, in 2013. DOI: 10.1016/j.bmc.2013.04.045
The Creative Commons license below applies only to this version of the article.