Document Type

Article

Publication Date

2018

Abstract

Purpose Achieving successful gene therapy requires delivery of a gene vector specifically to the targeted tissue with efficient expression and a good safety profile. The objective of this work was to develop, characterize and determine if a novel gemini surfactant-based lipoplex systems, modified with a cancer-targeting peptide p18-4, could serve this role. Methods The targeting peptide p18-4 was either chemically coupled to a gemini surfactant backbone or physically co-formulated with the lipoplexes. The influence of targeting ligand and formulation strategies on essential physicochemical properties of the lipoplexes was evaluated by dynamic light scattering and small angle X-ray scattering techniques. In vitro transfection activity and cellular toxicity of lipoplexes were assessed in a model human melanoma cell line. Results All lipoplexes zeta potential and particle size were optimal for cellular uptake and physical stability of the system. The lipoplexes adopted an inverted-hexagonal lipid arrangement. The lipoplexes modified with the peptide showed no significant changes in physicochemical properties or lipoplex assembly. The modification of the lipoplexes with the targeting peptide significantly enhanced protein expression 2-6 fold compared to non-modified lipoplexes. In addition, p18-4 modified lipoplexes significantly improved the safety of the lipoplexes. The ability of the p18-4 modified lipoplexes to selectively express the model protein was confirmed by using healthy human epidermal keratinocytes (HEKa). Conclusion The gemini surfactant-based lipoplexes modified with p18-4 peptide showed significantly higher efficiency and safety compared to the system that did not contain a cancer targeting peptide and provided evidence for their potential application to achieve targeted melanoma gene therapy.

Comments

This article was originally published in Journal of Pharmacy & Pharmaceutical Sciences, volume 21, issue 1, in 2018. DOI: 10.18433/jpps30010

Copyright

Journal of Pharmacy and Pharmaceutical Sciences

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.