Document Type


Publication Date



Objective—To investigate molecular mechanisms mediating anti-fibrotic effect of SAHA in the canine cornea using an in vitro model. We hypothesized that SAHA attenuates corneal fibrosis by modulating Smad-dependent and, to a lesser extent, Smad-independent signaling pathways activated by TGF-β1, as well as matrix metalloproteinase (MMP) activity.

Methods—Cultured canine corneal fibroblasts (CCF) were incubated in the presence/absence of TGF-β1 (5ng/ml) and SAHA (2.5μM) for 24hrs. Western blot analysis was used to quantify non-phosphorylated and phosphorylated isoforms of Smad2/3, p38 MAP kinase (MAPK), ERK1/2 and JNK1. Real-time PCR and zymography were utilized to quantify MMP1, MMP2, MMP8 and MMP9 mRNA expression and MMP2 and MMP9 protein activity, respectively.

Results—TGF-β1 treatment caused a significant increase in phospho-Smad2/3 and phospho-p38 MAPK. SAHA treatment reduced TGF-β1-induced phosphorylation of Smad2/3 but not of p38 MAPK. TGF-β1 did not modulate the phosphorylation of ERK1/2 or JNK1. SAHA caused a significant reduction in phospho-ERK1/2 expression regardless of concurrent TGF-β1 treatment. Neither SAHA alone nor in combination with TGF-β1 altered phospho-JNK1 expression. TGF-β1 significantly increased MMP1 and MMP9 mRNA expression but did not alter MMP2 mRNA. SAHA treatment attenuated TGF-β1-induced MMP9 mRNA expression while significantly enhancing TGF-β1-induced MMP1 mRNA expression. Zymography detected reduced expression of MMP2 and MMP9 proteins in untreated control CCF. TGF-β1 treatment did not alter their expression but SAHA treatment +/−TGF-β1 significantly increased MMP2 and MMP9 protein expression.

Conclusions—The corneal anti-fibrotic effects of SAHA involve multiple mechanisms including modulation of canonical and non-canonical components of TGF-β1 intracellular signaling and MMP activity.


This is the accepted version of the following article:

Gronkiewicz KM, Giuliano EA, Sharma A, Mohan RR. Molecular Mechanisms of Suberoylanilide Hydroxamic Acid (SAHA) in the Inhibition of TGF-β1 Mediated Canine Corneal Fibrosis. Vet Ophthalmol. 2016;19(6):480-487. doi:10.1111/vop.12331.

which has been published in final form at DOI: 10.1111/vop.12331. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.