Document Type
Article
Publication Date
2016
Abstract
The aim of this study was to develop a novel in vivo corneal model of fibrosis in dogs utilizing alkali burn and determine the ability of suberanilohydroxamic acid (SAHA) to inhibit corneal fibrosis using this large animal model. To accomplish this, we used seven research Beagle dogs. An axial corneal alkali burn in dogs was created using 1 N NaOH topically. Six dogs were randomly and equally assigned into 2 groups: A) vehicle (DMSO, 2 μL/mL); B) anti-fibrotic treatment (50 μM SAHA). The degree of corneal opacity, ocular health, and anti-fibrotic effects of SAHA were determined utilizing the Fantes grading scale, modified McDonald-Shadduck (mMS) scoring system, optical coherence tomography (OCT), corneal histopathology, immunohistochemistry (IHC), and transmission electron microscopy (TEM). The used alkali burn dose to produce corneal fibrosis was well tolerated as no significant difference in mMS scores between control and treatment groups (p=0.89) were detected. The corneas of alkali burned dogs showed significantly greater levels of α-smooth muscle actin, the fibrotic marker, than the controls (p=0.018). Total corneal thickness of all dogs post-burn was significantly greater than baseline OCT images irrespective of treatment (p=0.004); TEM showed that alkali burned corneas had significantly greater minimum and maximum interfibrillar distances than the controls (p=0.026, p=0.018). The tested topical corneal alkali burn dose generated significant opacity and fibrosis in dog corneas without damaging the limbus as evidenced by histopathology, IHC, TEM, and OCT findings, and represents a viable large animal corneal fibrosis in vivo model. Additional in vivo SAHA dosing studies with larger sample size are warranted.
Recommended Citation
Gronkiewicz K, Giuliano E, Kuroki K, et al. Development of a novel in vivo corneal fibrosis model in the dog. Exp Eye Res. 2016;143:75-88. doi:10.1016/j.exer.2015.09.010.
Copyright
Elsevier
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Included in
Animal Experimentation and Research Commons, Animals Commons, Musculoskeletal, Neural, and Ocular Physiology Commons, Ophthalmology Commons, Other Pharmacy and Pharmaceutical Sciences Commons, Other Veterinary Medicine Commons, Small or Companion Animal Medicine Commons
Comments
NOTICE: this is the author’s version of a work that was accepted for publication in Experimental Eye Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Experimental Eye Research, volume 143, in 2016. DOI: 10.1016/j.exer.2015.09.010
The Creative Commons license below applies only to this version of the article.