Document Type

Article

Publication Date

2016

Abstract

Inhibitor of differentiation (Id) proteins are DNA-binding transcription factors involved in cellular proliferation, migration, inflammation, angiogenesis and fibrosis. However, their expression and role in the cornea is unknown. The present study was undertaken to characterize the expression of Id proteins and their interactions with the pro-fibrotic cytokine Transforming Growth Factor β1 (TGFβ1) and anti-fibrotic cytokine, bone morphogenic protein 7 (BMP7) in human cornea. Human donor corneas procured from Eye Bank were used. Id proteins were localized in human corneal sections using immunofluorescence. Primary cultures of human corneal fibroblasts (HCF) were established and treated with either TGFβ1 (5 ng/ml) or BMP7 (10 ng/ml) for 24 h in serum free medium. Expression of Id’s in response to TGFβ1, BMP7 and TGFβ1 + BMP7 was analyzed by quantitative real time PCR (qRT-PCR) and western blot analysis. Id1 and Id2 proteins were ubiquitously expressed in the epithelial cells and stromal keratocytes in human cornea. The Id1 was localized to the basal epithelial cells as seen by immunohistochemistry. HCF expressed all known mammalian Id genes (Id1–Id4). In addition, Id1 and Id2 are selectively expressed in HCF. Treatment of human recombinant TGFβ1 (5 ng/ml) to serum-starved HCF showed a significant increase in Id genes (Id1, Id2 and Id4) at 2 h time point compared to BMP7 treatment, which showed time dependent increase in the expression of Id1–Id3 at 24–48 h. Combined treatment with TGFβ1 + BMP7 to HCF showed a significant increase in Id1 transcript and an increasing trend in Id3 and Id4 expression. The results of this study suggest that Id family of genes (Id1–Id4) are localized in the human cornea and expressed in the corneal fibroblasts. Also, Id’s were differentially regulated with TGFβ1 and/or BMP7 in a time dependent manner and might serve as a therapeutic target in corneal fibrosis.

Comments

NOTICE: this is the author’s version of a work that was accepted for publication in Experimental Eye Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Experimental Eye Research, volume 146, in 2016. DOI: 10.1016/j.exer.2015.12.003

The Creative Commons license below applies only to this version of the article.

Copyright

Elsevier

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.