Development of a High-Throughput Screening Paradigm for the Discovery of Small Molecule Modulators of Adenylyl Cyclase: Identification of an Adenylyl Cyclase 2 Inhibitor
Document Type
Article
Publication Date
2013
Abstract
Adenylyl cyclase (AC) isoforms are implicated in several physiologic processes and disease states, but advancements in the therapeutic targeting of AC isoforms have been limited by the lack of potent and isoform-selective small-molecule modulators. The discovery of AC isoform-selective small molecules is expected to facilitate the validation of AC isoforms as therapeutic targets and augment the study of AC isoform function in vivo. Identification of chemical probes for AC2 is particularly important because there are no published genetic deletion studies and few small-molecule modulators. The present report describes the development and implementation of an intact-cell, small-molecule screening approach and subsequent validation paradigm for the discovery of AC2 inhibitors. The NIH clinical collections I and II were screened for inhibitors of AC2 activity using PMA-stimulated cAMP accumulation as a functional readout. Active compounds were subsequently confirmed and validated as direct AC2 inhibitors using orthogonal and counterscreening assays. The screening effort identified SKF-83566 [8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide] as a selective AC2 inhibitor with superior pharmacological properties for selective modulation of AC2 compared with currently available AC inhibitors. The utility of SKF-83566 as a small-molecule probe to study the function of endogenous ACs was demonstrated in C2C12 mouse skeletal muscle cells and human bronchial smooth muscle cells.
Recommended Citation
Jason M. Conley, Cameron S. Brand, Amy S. Bogard, Evan P. S. Pratt, Ruqiang Xu, Gregory H. Hockerman, Rennolds S. Ostrom, Carmen W. Dessauer and Val J. Watts. Development of a high-throughput screening paradigm for the discovery of small molecule modulators of adenylyl cyclase: Identification of an adenylyl cyclase 2 inhibitor. J Pharmacol Exp Thera, 347(2):276-87, 2013.
Copyright
American Society for Pharmacology and Experimental Therapeutics
Comments
This article was originally published in Journal of Pharmacology and Experimental Therapeutics, volume 347, issue 2, in 2013. DOI: 10.1124/jpet.113.207449