Document Type
Article
Publication Date
2012
Abstract
Many of melatonin’s actions are mediated through interaction with the G-protein coupled membrane bound melatonin receptors type 1 and type 2 (MT1 and MT2, respectively) or, indirectly with nuclear orphan receptors from the RORα/RZR family. Melatonin also binds to the quinone reductase II enzyme, previously defined the MT3 receptor. Melatonin receptors are widely distributed in the body; herein we summarize their expression and actions in non-neural tissues. Several controversies still exist regarding, for example, whether melatonin binds the RORα/RZR family. Studies of the peripheral distribution of melatonin receptors are important since they are attractive targets for immunomodulation, regulation of endocrine, reproductive and cardiovascular functions, modulation of skin pigmentation, hair growth, cancerogenesis, and aging. Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes.
Recommended Citation
Radomir M. Slominski, Russel J. Reiter, Natalia Schlabritz-Loutsevitch, Rennolds S Ostrom and Andrzej T. Slominski. Melatonin Membrane Receptors in Peripheral Tissues: Distribution and Functions. Mol Cell Endocrin, 351:152-166, 2012.
Copyright
Elsevier
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Included in
Amino Acids, Peptides, and Proteins Commons, Cell Biology Commons, Other Pharmacy and Pharmaceutical Sciences Commons
Comments
NOTICE: this is the author’s version of a work that was accepted for publication in Molecular and Cellular Endocrinology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Molecular and Cellular Endocrinology, volume 351, in 2012. DOI: 10.1016/j.mce.2012.01.004
The Creative Commons license below applies only to this version of the article.