Document Type

Article

Publication Date

12-2004

Abstract

Stoichiometric nanocrystalline nickel–zinc ferrites were synthesized by a reverse micelle method following a multi-microemulsion approach. Different pH values were chosen for the alkali precipitating reaction during the synthesis of different powders. Synthesized, as-dried and subsequently calcined powders were characterized in terms of their magnetic properties. XRD analyses and specific-surface area measurements were used to determine the average particle sizes of the synthesized samples. DCS and TGA measurements were performed to reveal the phase transitions within the samples at elevated temperatures, whereas TEM was used to view and record the microstructure of the nanosized ferrite samples. A possible mechanism of the formation of the synthesized NiZn-ferrite was also discussed.

Comments

NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Magnetism and Magnetic Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Magnetism and Magnetic Materials, volume 284, in 2006. DOI: 10.1016/j.jmmm.2004.06.051

The Creative Commons license below applies only to this version of the article.

Copyright

Elsevier

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.