Assessment of the Activity of Ceftaroline Against Clinical Isolates of Penicillin-Intermediate and Penicillin-Resistant Streptococcus pneumoniae with elevated MICs of Ceftaroline Using an In Vitro Pharmacodynamic Model

Document Type


Publication Date



Objectives This study assessed the pharmacodynamics of ceftaroline against penicillin-intermediate and penicillin-resistant Streptococcus pneumoniae with elevated MICs of ceftaroline using an in vitro pharmacodynamic model.

Methods Nine isolates of S. pneumoniae, including one penicillin-susceptible isolate, one penicillin-intermediate isolate and seven penicillin-resistant isolates, were tested. The pharmacodynamic model was inoculated with a concentration of 1 × 106 cfu/mL and ceftaroline was dosed twice daily (at 0 and 12 h) to simulate the fCmax (maximum free concentration in serum) and t1/2 (half-life in serum) obtained after 600 mg intravenous doses every 12 h (fCmax, 16 mg/L; t1/2, 2.6 h). Ceftaroline was compared with ceftriaxone dosed once daily to simulate the fCmax and t1/2 obtained after a 1 g dose (fCmax, 18 mg/L; t1/2, 8.0 h). Samples were collected over 24 h to assess viable growth and possible changes in ceftaroline MICs over time.

Results Ceftaroline fT>MIC (time of free serum concentration over the MIC) of 100% (ceftaroline MICs, ≤0.5 mg/L) was bactericidal (≥3 log10 killing) against all isolates at 6 h and completely eradicated all organisms at 12 and 24 h. No bacterial regrowth occurred over the study period and no changes in ceftaroline MICs were observed. Upon ceftriaxone exposure, S. pneumoniae isolates with ceftriaxone MICs of 0.12 and 0.25 mg/L were eradicated, but isolates with ceftriaxone MICs of 1–8 mg/L resulted in initial bacterial reduction at 6 h with organism regrowth at 12 h and no reduction in organism concentration, relative to the starting inoculum, at 24 h.

Conclusions Ceftaroline fT>MIC of 100% (ceftaroline MICs, ≤0.5 mg/L) was bactericidal (≥3 log10 killing) and eradicated all S. pneumoniae at 12 and 24 h with no regrowth.


This article was originally published in Journal of Antimicrobial Chemotherapy, volume 67, issue 7, in 2012. DOI: 10.1093/jac/dks113


The authors