Document Type
Article
Publication Date
5-9-2012
Abstract
Calmodulin is a prototypical and versatile Ca2+ sensor with EF-hands as its high-affinity Ca2+ binding domains. Calmodulin is present in all eukaryotic cells, mediating Ca2+-dependent signaling. Upon binding Ca2+, calmodulin changes its conformation to form complexes with a diverse array of target proteins. Despite a wealth of knowledge on calmodulin, little is known on how target proteins regulate calmodulin’s ability to bind Ca2+. Here, we take advantage of two splice variants of SK2 channels, which are activated by Ca2+-bound calmodulin, but show different sensitivity to Ca2+ for their activation. Protein crystal structures and other experiments show that depending on which SK2 splice variant it binds to calmodulin adopts drastically different conformations with different affinities for Ca2+ at its C-lobe. Such target protein induced conformational changes make calmodulin a dynamic Ca2+ sensor, capable of responding to different Ca2+ concentrations in cellular Ca2+ signaling.
Recommended Citation
Zhang M, Abrams C, Wang L, Gizzi A, He L, Lin R, Chen Y, Loll PJ, Pascal JM, Zhang JF. Structural basis for calmodulin as a dynamic calcium sensor. Structure (Cell Press). 2012 May 9;20(5):911-23. PMCID: PMC3372094. doi: 10.1016/j.str.2012.03.019
Supplemental Information
Copyright
Cell Press/Elsevier
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Comments
NOTICE: this is the author’s version of a work that was accepted for publication in Structure. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Structure, volume 20, issue 5, in 2012. DOI: 10.1016/j.str.2012.03.019
The Creative Commons license below applies only to this version of the article.