"Impact of Stereochemical Replacement on Activity and Selectivity of Me" by Sandeep Lohan, Anastasia G. Konshina et al.
 

Document Type

Article

Publication Date

6-17-2025

Abstract

Herein, we report a library of 7-mer macrocyclic peptides designed by systematically replacing one, multiple, or all L-amino acids with their D-isomers in our previously identified hit compounds. Lead peptides, 15c and 16c, showed broad-spectrum activity against bacteria (Gram-positive minimum inhibitory activity (MIC 1.5–6.2 µg/mL and Gram-negative MIC 6.2–25 µg/mL) and fungi (MIC = 3.1–25 µg/mL). Additionally, peptides 15c and 16c showed rapid kill kinetics and biofilm degradation potential against both bacteria and fungi, while resistance development was not observed. The antimicrobial effect of these macrocyclic peptides was attributed to their membranolytic action, which was confirmed by calcein dye leakage assay and scanning electron microscopy analysis. Both peptides, 15c (HC50 = 335 µg/mL) and 16c (HC50 = 310 µg/mL), exhibited significantly lower hemolytic activity compared to their parent peptide p3 (HC50 = 230 µg/mL). At 100 µg/mL, both peptides showed >90% cell viability after 24 h incubation across four normal mammalian cell lines. Both peptides showed plasma stability (t1/2 ≥ 6 h), further supporting their therapeutic potential. Finally, the molecular mechanisms determining the pharmacological properties of a number of typical representatives of each series of synthesized peptides were investigated by NMR spectroscopy and computer simulations. The study revealed specific combinations of structural, dynamic, and hydrophobic parameters of these amphiphilic peptides that allow a reasonable prediction of their hemolytic activity. This Structure-Activity Relationship provides a basis for the rational design of peptides or peptidomimetics with predefined pharmacological profiles.

Comments

This article was originally published in npj Antimicrobials and Resistance, volume 3, issue 1, in 2025. https://doi.org/10.1038/s44259-025-00121-3

44259_2025_121_MOESM1_ESM.docx (27793 kB)
Supplementary information

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.