Document Type
Article
Publication Date
2012
Abstract
Three nucleoside analogues, 3′-fluoro-2′,3′-dideoxythymidine (FLT), 3′-azido-2′,3′-dideoxythymidine (AZT), and 2′,3′-dideoxy-3′-thiacytidine (3TC) were conjugated with three different dicarboxylic acids to afford the long chain dicarboxylate esters of nucleosides. In general, dinucleoside ester conjugates of FLT and 3TC with long chain dicarboxylic acids exhibited higher anti-HIV activity than their parent nucleosides. Dodecanoate and tetradecanoate dinucleoside ester derivatives of FLT were found to be the most potent compounds with EC50 values of 0.8–1.0 nM and 3–4 nM against HIV-1US/92/727 and HIV-1IIIB cells, respectively. The anti-HIV activity of the 3TC conjugates containing long chain dicarboxylate diester (EC50 = 3–60 nM) was improved by 1.5–66 fold when compared to 3TC (EC50 = 90–200 nM). This study reveals that the symmetrical ester conjugation of dicarboxylic acids with a number of nucleosides results in conjugates with improved anti-HIV profile.
Recommended Citation
Agarwal, H. K., Buckheit, K. W., Buckheit, R. W. Jr, Parang, K. Synthesis and anti-HIV activities of symmetrical dicarboxylate esters of dinucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett. (2012) 22, 5451-5454.
DOI:10.1016/j.bmcl.2012.07.037
Copyright
Elsevier
Comments
NOTICE: this is the author’s version of a work that was accepted for publication in Bioorganic & Medicinal Chemistry Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Bioorganic & Medicinal Chemistry Letters, volume 22, in 2012. DOI: 10.1016/j.bmcl.2012.07.037