Document Type


Publication Date




Building upon our earlier findings of significant associations between hair dye and relaxer use with increased breast cancer risk, we evaluated associations of select characteristics of use with breast tumor clinicopathology.


Using multivariable-adjusted models we examined the associations of interest in a case-only study of 2998 women with breast cancer, overall and stratified by race and estrogen receptor (ER) status, addressing multiple comparisons using Bonferroni correction.


Compared to salon application of permanent hair dye, home kit and combination application (both salon and home kit application) were associated with increased odds of poorly differentiated tumors in the overall sample. This association was consistent among Black (home kit: OR 2.22, 95 % CI: 1.21–5.00; combination: OR 2.46, 95 % CI: 1.21–5.00), but not White women, and among ER+ (home kit: OR 1.47, 95 % CI: 0.82–2.63; combination: OR 2.98, 95 % CI: 1.62–5.49) but not ER-cases. Combination application of relaxers was associated with increased odds of tumors >2.0 cm vs. <1.0 cm (OR = 1.82, 95 % CI: 1.23–2.69). Longer duration and earlier use of relaxers and combination application of permanent hair dyes and relaxers were associated with breast tumor features including higher tumor grade and larger tumor size, which often denote more aggressive phenotypes, although the findings did not maintain significance with Bonferroni correction.


These novel data support reported associations between hair dye and relaxer use with breast cancer, showing for the first time, associations with breast tumor clinicopathologic features. Improved hair product exposure measurement is essential for fully understanding the impact of these environmental exposure with breast cancer and to guide risk reduction strategies in the future.


NOTICE: this is the author’s version of a work that was accepted for publication in Environmental Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Research, volume 203, in 2022.

The Creative Commons license below applies only to this version of the article.

Peer Reviewed




Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.