Document Type

Technical Report

Publication Date

8-2023

Abstract

The growing complexity of data-intensive software demands constant innovation in computer hardware design. Performance is a critical factor in rapidly evolving applications such as artificial intelligence (AI). Transaction-level modeling (TLM) is a valuable technique used to represent hardware and software behavior in a simulated environment. However, extracting actionable insights from TLM simulations is not a trivial task. We present Netmemvisual, an interactive, cross-platform visualization tool for exposing memory bottlenecks in TLM simulations. We demonstrate how Netmemvisual helps system designers rapidly analyze complex TLM simulations to find memory contention. We describe the project’s current features, experimental results with two state-of-the-art deep neural networks (DNNs), and planned future work.

Technical Report Number

FSE-TR-23-01

Copyright

The authors

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.