Document Type
Article
Publication Date
6-18-2013
Abstract
Integrated waveguide biosensors, when combined with fluorescent labeling, have significantly impacted the field of biodetection. While there are numerous types of waveguide sensors, the fundamental excitation method is fairly consistent: the evanescent field of the waveguide excites a fluorophore whose emission is detected, either directly via imaging or indirectly via a decrease in power transfer. Recently, a sensor device was demonstrated which is able to back-couple the emitted light into the waveguide, allowing the signal to be detected directly. However, this previous work focused on the development of an empirical model, leaving many theoretical questions unanswered. Additionally, the results from the novel back-coupling route were not compared with the results from the more conventional imaging technique. In this study, we develop finite difference time domain simulations to predict the sensor's performance both in air and aqueous environments. We also perform complementary experiments to verify the modeling, measuring the fluorescence coupled into the waveguide, and radiated perpendicular to the waveguide. Finally, we performed spatiotemporal measurements of the fluorescence on the waveguide. Utilizing these measurements, we are able to measure the fluorescent decay rate of the fluorescent dye at arbitrary points along the length of the waveguide.
Recommended Citation
M. C. Harrison, A. M. Armani, Spatiotemporal Fluorescent Detection Measurements Using Embedded Waveguide Sensors," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, 7000207, March-April 2014. https://doi.org/10.1109/JSTQE.2013.2265217
Copyright
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Included in
Atomic, Molecular and Optical Physics Commons, Biomaterials Commons, Other Electrical and Computer Engineering Commons
Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in IEEE Journal of Selected Topics in Quantum Electronics, volume 20, issue 2, in 2013 following peer review. The definitive publisher-authenticated version is available online at https://doi.org/10.1109/JSTQE.2013.2265217.