Document Type

Conference Proceeding

Publication Date

2015

Abstract

The question addressed in this paper is how to correctly approximate infinite data given by systems of simultaneous corecursive definitions. We devise a categorical framework for reasoning about regular datatypes, that is, datatypes closed under products, coproducts and fixpoints. We argue that the right methodology is on one hand coalgebraic (to deal with possible nontermination and infinite data) and on the other hand 2-categorical (to deal with parameters in a disciplined manner). We prove a coalgebraic version of Bekic lemma that allows us to reduce simultaneous fixpoints to a single fix point. Thus a possibly infinite object of interest is regarded as a final coalgebra of a many-sorted polynomial functor and can be seen as a limit of finite approximants. As an application, we prove correctness of a generic function that calculates the approximants on a large class of data types.

Comments

This paper was originally presented at the Conference on Algebra and Coalgebra in Computer Science (CALCO) in 2015. DOI: 10.4230/LIPIcs.CALCO.2015.205

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.