Document Type

Article

Publication Date

2004

Abstract

With coalgebras usually being defined in terms of an endofunctor T on sets, this paper shows that modal logics for T-coalgebras can be naturally described as functors L on boolean algebras. Building on this idea, we study soundness, completeness and expressiveness of coalgebraic logics from the perspective of duality theory. That is, given a logic L for coalgebras of an endofunctor T, we construct an endofunctor L such that L-algebras provide a sound and complete (algebraic) semantics of the logic. We show that if L is dual to T, then soundness and completeness of the algebraic semantics immediately yield the corresponding property of the coalgebraic semantics. We conclude by characterising duality between L and T in terms of the axioms of L. This provides a criterion for proving concretely given logics to be sound, complete and expressive.

Comments

This article was originally published in Electronic Notes in Theoretical Computer Science, volume 106, in 2004. DOI: 10.1016/j.entcs.2004.02.037

Copyright

Elsevier

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.