Document Type

Article

Publication Date

5-31-2022

Abstract

Chronic aphasia, a devastating impairment of language, affects up to a third of stroke survivors. Speech and language therapy has consistently been shown to improve language function in prior clinical trials, but few clinicially applicable predictors of individual therapy response have been identified to date. Consequently, clinicians struggle substantially with prognostication in the clinical management of aphasia. A rising prevalence of aphasia, in particular in younger populations, has emphasized the increasing demand for a personalized approach to aphasia therapy, that is, therapy aimed at maximizing language recovery of each individual with reference to evidence-based clinical recommendations. In this narrative review, we discuss the current state of the literature with respect to commonly studied predictors of therapy response in aphasia. In particular, we focus our discussion on biographical, neuropsychological, and neurobiological predictors, and emphasize limitations of the literature, summarize consistent findings, and consider how the research field can better support the development of personalized aphasia therapy. In conclusion, a review of the literature indicates that future research efforts should aim to recruit larger samples of people with aphasia, including by establishing multisite aphasia research centers.

Comments

This article was originally published in Journal of Stroke, volume 24, issue 2, in 2022. https://doi.org/10.5853/jos.2022.01102

Peer Reviewed

1

Copyright

Korean Stroke Society

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.