Document Type
Article
Publication Date
1-1-2021
Abstract
Background:
The classification of patients with primary progressive aphasia (PPA) into variants is time-consuming, costly, and requires combined expertise by clinical neurologists, neuropsychologists, speech pathologists, and radiologists.Objective:
The aim of the present study is to determine whether acoustic and linguistic variables provide accurate classification of PPA patients into one of three variants: nonfluent PPA, semantic PPA, and logopenic PPA.Methods:
In this paper, we present a machine learning model based on deep neural networks (DNN) for the subtyping of patients with PPA into three main variants, using combined acoustic and linguistic information elicited automatically via acoustic and linguistic analysis. The performance of the DNN was compared to the classification accuracy of Random Forests, Support Vector Machines, and Decision Trees, as well as to expert clinicians’ classifications.Results:
The DNN model outperformed the other machine learning models as well as expert clinicians’ classifications with 80% classification accuracy. Importantly, 90% of patients with nfvPPA and 95% of patients with lvPPA was identified correctly, providing reliable subtyping of these patients into their corresponding PPA variants.Conclusion:
We show that the combined speech and language markers from connected speech productions can inform variant subtyping in patients with PPA. The end-to-end automated machine learning approach we present can enable clinicians and researchers to provide an easy, quick, and inexpensive classification of patients with PPA.Recommended Citation
Themistocleous, C., Ficek, B., Webster, K., Den Ouden, D.B., Hillis, A.E., & Tsapkini, K. (2021) Automatic subtyping of individuals with Primary Progressive Aphasia. Journal of Alzheimer’s Disease, 79(3), 1185-1194. https://doi.org/10.3233/JAD-201101
Peer Reviewed
1
Copyright
The authors
Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License
Included in
Artificial Intelligence and Robotics Commons, Communication Sciences and Disorders Commons
Comments
This article was originally published in Journal of Alzheimer’s Disease, volume 79, issue 3, in 2021. https://doi.org/10.3233/JAD-201101