Document Type


Publication Date



Elastin-like polypeptides (ELPs) are polypentapeptides that undergo hydrophobic collapse and aggregation above a specific transition temperature, Tt. ELP diblocks sharing a common “core” block (I60) but varying “outer” blocks (A80, P40) were designed, where Tt,I < Tt,A < Tt,P. The formation of ~55 nm diameter mixed micelles from these ELP diblocks was verified using dynamic light scattering (DLS), multiangle light scattering (MALS) and fluorescence resonance energy transfer (FRET). To confer affinity to the blood circulating protein fibrinogen, a fibrinogen-binding tetrapeptide sequence (GPRP) was fused to A80-I60, while P40-I60 was fused to a non-binding control (GPSP). The self-assembling, peptide-displaying, mixed micelles exhibit temperature-modulated avidities for immobilized and soluble fibrinogen at 32 °C and 42 °C. In this initial proof-of-concept design, the engineered mixed micelles were shown to disengage fibrinogen at elevated temperatures. The modular nature of this system can be used for developing in vivo depot systems that will only be triggered to release in situ upon specific stimuli.


This is the accepted version of the following article in Advanced Healthcare Matters:

Soon, A. S. C.; Smith, M. H.; Herman, E. S.; Lyon, L. A.; Barker, T. H., Development of Self-Assembling Mixed Protein Micelles with Temperature-Modulated Avidities Adv. Healthcare Mat. 2013, 2 (7), 1045-1055.

which has been published in final form at DOI: 10.1002/adhm.201200330.



Included in

Chemistry Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.