Document Type


Publication Date



Multiparameter observed from satellite, including microwave brightness temperature, skin temperature, air temperature, and carbon monoxide, have been analyzed to identify the anomalous signals associated with the M 7.3 Iran earthquake of November 12, 2017. Besides removing the multiyear variability of parameters as background, the effect of surface and atmosphere of a dust storm event in Middle East region during October 29–November 1 is considered to distinguish the possible anomalies associated with the earthquake. The characteristic behaviors of surface and atmospheric parameters clearly show the signals associated with the M 7.3 earthquake and the dust storm event. The multiple parameters at different pressure levels provide clear evidence to identify the anomalous signals associated with an earthquake, which could help us to minimize the false alarms. Our results show the atmospheric disturbances caused by other natural hazard events could mask the thermal anomalies induced by tectonic activities, which cannot be ignored when detecting the abnormal surface and atmospheric signals associated with earthquake activities.


This article was originally published in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, volume 15, in 2022.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.