Document Type


Publication Date



Translation elongation factor P (EF‐P) in Bacillus subtilis is required for a form of surface migration called swarming motility. Furthermore, B. subtilis EF‐P is post‐translationally modified with a 5‐aminopentanol group but the pathway necessary for the synthesis and ligation of the modification is unknown. Here we determine that the protein YmfI catalyzes the reduction of EF‐P‐5 aminopentanone to EF‐P‐5 aminopentanol. In the absence of YmfI, accumulation of 5‐aminopentanonated EF‐P is inhibitory to swarming motility. Suppressor mutations that enhanced swarming in the absence of YmfI were found at two positions on EF‐P, including one that changed the conserved modification site (Lys 32) and abolished post‐translational modification. Thus, while modification of EF‐P is thought to be essential for EF‐P activity, here we show that in some cases it can be dispensable. YmfI is the first protein identified in the pathway leading to EF‐P modification in B. subtilis, and B. subtilis encodes the first EF‐P ortholog that retains function in the absence of modification.


This is the accepted version of the following article:

Hummels, K.R., Witzky, A., Rajkovic, A., Tollerson, R., Jones, L.A., Ibba M. and Kearns, D.B. (2017) Carbonyl reduction by YmfI completes the modification of EF-P in Bacillus subtilis to prevent accumulation of an inhibitory modification state. Mol. Microbiol. 106, 236-251.

which has been published in final form at This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.