Document Type

Article

Publication Date

2-7-2018

Abstract

Non-targeted analysis of environmental samples, using comprehensive two‐dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC/ToF-MS), poses significant data analysis challenges due to the large number of possible analytes. Non-targeted data analysis of complex mixtures is prone to human bias and is laborious, particularly for comparative environmental samples such as contaminated soil pre- and post-bioremediation. To address this research bottleneck, we developed OCTpy, a Python™ script that acts as a data reduction filter to automate GC × GC/ToF-MS data analysis from LECO® ChromaTOF® software and facilitates selection of analytes of interest based on peak area comparison between comparative samples. We used data from polycyclic aromatic hydrocarbon (PAH) contaminated soil, pre- and post‐bioremediation, to assess the effectiveness of OCTpy in facilitating the selection of analytes that have formed or degraded following treatment. Using datasets from the soil extracts pre- and post‐bioremediation, OCTpy selected, on average, 18% of the initial suggested analytes generated by the LECO® ChromaTOF® software Statistical Compare feature. Based on this list, 63–100% of the candidate analytes identified by a highly trained individual were also selected by OCTpy. This process was accomplished in several minutes per sample, whereas manual data analysis took several hours per sample. OCTpy automates the analysis of complex mixtures of comparative samples, reduces the potential for human error during heavy data handling and decreases data analysis time by at least tenfold.

Comments

NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Chromatography A. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Chromatography A, volume 1541, in 2018. DOI: 10.1016/j.chroma.2018.02.016

The Creative Commons license below applies only to this version of the article.

Copyright

Elsevier

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.