Document Type


Publication Date



Studies of stable isotopes of water in the environment have been fundamental to advancing our understanding of how water moves through the soil‐plant‐atmosphere continuum; however, much of this research focuses on how water isotopes vary in time, rather than in space. We examined the spatial variation in the δ18O and δ2H of throughfall and bulk soil water, as well as branch xylem and bulk leaf water of Picea abies (Norway Spruce) and Fagus sylvatica (Beech), in a 1 ha forest plot in the northern Alps of Switzerland. Means and ranges of water isotope ratios varied considerably among throughfall, soil, and xylem samples. Soil water isotope ratios were often poorly explained by soil characteristics and often not predictable from proximal samples. Branch xylem water isotope values varied less than either soil water or bulk leaf water. The isotopic range observed within an individual tree crown was often similar to that observed among different crowns. As a result of the heterogeneity in isotope ratios, inferences about the depth of plant root water uptake drawn from a two end‐member mixing model were highly sensitive to the soil sampling location. Our results clearly demonstrate that studies using water isotopes to infer root water uptake must explicitly consider how to characterize soil water, incorporating measures of both vertical and lateral variation. By accounting for this spatial variation and the processes that shape it, we can improve the application of water isotopes to studies of plant ecophysiology, ecohydrology, soil hydrology, and paleoclimatology.


This is the accepted version of the following article:

Goldsmith, G. R., Allen, S. T., Braun, S., Engbersen, N., González-Quijano, C. R., Kirchner, J. W., & Siegwolf, R. T. W. (2018). Spatial variation in throughfall, soil, and plant water isotopes in a temperate forest. Ecohydrology. doi: 10.1002/eco.2059

which has been published in final form at DOI: 10.1002/eco.2059. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.