Document Type


Publication Date



Fibers are ubiquitous in biology, and include tensile materials produced by specialized glands (such as silks), extracellular fibrils that reinforce exoskeletons and connective tissues (such as chitin and collagen), as well as intracellular filaments that make up the metazoan cytoskeleton (such as F-actin, microtubules, and intermediate filaments). Hagfish gland thread cells are unique in that they produce a high aspect ratio fiber from cytoskeletal building blocks within the confines of their cytoplasm. These threads are elaborately coiled into structures that readily unravel when they are ejected into seawater from the slime glands. In this review we summarize what is currently known about the structure and function of gland thread cells and we speculate about the mechanism that these cells use to produce a mechanically robust fiber that is almost one hundred thousand times longer than it is wide. We propose that a key feature of this mechanism involves the unidirectional rotation of the cell’s nucleus, which would serve to twist disorganized filaments into a coherent thread and impart a torsional stress on the thread that would both facilitate coiling and drive energetic unravelling in seawater.


This article was originally published in Cells, volume 5, issue 2, in 2016. DOI: 10.3390/cells5020025


The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.