Document Type


Publication Date



We have estimated the mass, radius, and luminosity of 26 Mira variables that are known OH sources of radio emission at 1612 MHz. The time-independent solution of Salpeter's stellar wind equation and a period-density relation are used to solve for basic stellar parameters, with the aid of the terminal expansion velocity of the OH maser cloud. Masses obtained from these calculations are consistent with other estimated values for masses of Mira variables. Good agreement is obtained when comparing the rate of mass loss as determined from Reimers's semiempirical relation to estimates of the mass loss rate as deduced from theoretical models involving radiation pressure on grains. These calculations suggest a strong correlation between the mass loss rate and the pulsation period. Arguments concerning the general properties of silicate grains from radiation-pressure-driven stellar wind equations are discussed.


This article was originally published in Astrophysical Journal, volume 226, in 1978. DOI: 10.1086/156624

Peer Reviewed



IOP Publishing



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.