Document Type


Publication Date



Titanium or vanadium metals or their alloys are important industrial metals/alloys. Because these resources are in short supply, the investigation of potential titaniferous-vanadiferous deposits needs special attention to bridge the supply-demand gap. The study integrates geological, geochemical, remote sensing, and geophysical data for assessing the potentiality of titaniferous-vanadiferous, magnetite-ilmenite mineralization in and around the Sudamakund and Paharpur areas, Gaya and Jehanabad districts, Bihar, India, and delineation of specific targets for detailed exploration. Field visits for large scale mapping on (1:12,500 scale) were used to conduct a reconnaissance survey for magnetite-ilmenite mineralization in parts of toposheet number 72G/04 in the Gaya and Jehanabad districts of Bihar, as well as the collection of bedrock samples (BRS), pit/trench samples (PTS), petrographic samples (PS), and petrochemical samples (PCS), followed by petrographic and ore microscopic study, and interpretation of chemical results. Signatures of oxidized iron-bearing sulphides (iron-oxides ratio) and other ferrous-iron-bearing minerals surrounded by altered rocks (clay bearing minerals) are visible in remote sensing images. The geological work was followed by ground geophysical gravity and magnetic surveys in selected blocks by the Geophysics Division, eastern region (ER) on a 1:12,500 scale. The magnetite ore is hard, compact, crystalline, and at some places, granular in nature. The analytical value of these magnetite ore bodies indicates average Fe content at 49.53% (range 25.85–60.78%), with a considerable amount of TiO2 (average 15.85%, range 1.47–26.77%), and V (average 144.79 ppm, range 30.00–256.00 ppm, from PTS). The trends of these magnetite ore deposits correspond to the major lineaments (NE-SW and NW-SE). The superimposition of gravity and magnetic contour maps with the geological map (1:12,500 scale) helps explain the observed geophysical anomalies, and the possible subsurface (horizontal and vertical) expansion of magnetite ore deposits in alluvium cover regions warrants further investigation.


This article was originally published in Minerals, volume 12, in 2022. (4532 kB)
Supplementary File 1

Peer Reviewed



The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.