Document Type


Publication Date



In this paper we study the time dependent Schrödinger equation with all possible self-adjoint singular interactions located at the origin, which include the δ and δ'-potentials as well as boundary conditions of Dirichlet, Neumann, and Robin type as particular cases. We derive an explicit representation of the time dependent Green's function and give a mathematical rigorous meaning to the corresponding integral for holomorphic initial conditions, using Fresnel integrals. Superoscillatory functions appear in the context of weak measurements in quantum mechanics and are naturally treated as holomorphic entire functions. As an application of the Green's function we study the stability and oscillatory properties of the solution of the Schrödinger equation subject to a generalized point interaction when the initial datum is a superoscillatory function.


This article was originally published in Journal of Differential Equations, volume 277, in 2021.

Peer Reviewed



The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.