Document Type


Publication Date



The Bargmann-Fock-Segal space plays an important role in mathematical physics and has been extended into a number of directions. In the present paper, we imbed this space into a Gelfand triple. The spaces forming the Fréchet part (i.e., the space of test functions) of the triple are characterized both in a geometric way and in terms of the adjoint of multiplication by the complex variable, using the Stirling numbers of the second kind. The dual of the space of test functions has a topological algebra structure, of the kind introduced and studied by the first named author and Salomon.


This article was originally published in Journal of Mathematical Physics, volume 59, in 2018. DOI: 10.1063/1.5035352

Peer Reviewed



The authors



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.