Document Type


Publication Date



This paper is devoted to connections between accelerants and potentials of Krein systems and of canonical systems of Dirac type, both on a finite interval. It is shown that a continuous potential is always generated by an accelerant, provided the latter is continuous with a possible jump discontinuity at the origin. Moreover, the generating accelerant is uniquely determined by the potential. The results are illustrated on pseudo-exponential potentials. The paper is a continuation of the earlier paper of the authors [1] dealing with the direct problem for Krein systems.


This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Integral Equations and Operator Theory, volume 68, issue 1, in 2010 following peer review. The final publication is available at Springer via DOI: 10.1007/s00020-010-1803-x

Peer Reviewed






To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.