Document Type


Publication Date



We study a family of stationary increment Gaussian processes, indexed by time. These processes are determined by certain measures σ (generalized spectral measures), and our focus here is on the case when the measure σ is a singular measure. We characterize the processes arising from when σ is in one of the classes of affine self-similar measures. Our analysis makes use of Kondratiev-white noise spaces. With the use of a priori estimates and the Wick calculus, we extend and sharpen (see Theorem 7.1) earlier computations of Ito stochastic integration developed for the special case of stationary increment processes having absolutely continuous measures. We further obtain an associated Ito formula (see Theorem 8.1).


NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Functional Analysis. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Functional Analysis, volume 261, in 2011. DOI: 10.1016/j.jfa.2011.03.012

The Creative Commons license below applies only to this version of the article.

Peer Reviewed




Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.