Document Type


Publication Date



In this paper we consider functions in the Hardy space Hp×q2 defined in the unit disc of matrix-valued. We show that it is possible, as in the scalar case, to decompose those functions as linear combinations of suitably modified matrix-valued Blaschke product, in an adaptive way. The procedure is based on a generalization to the matrix-valued case of the maximum selection principle which involves not only selections of suitable points in the unit disc but also suitable orthogonal projections. We show that the maximum selection principle gives rise to a convergent algorithm. Finally, we discuss the case of real-valued signals.


First published in Proceedings of the AMS in volume 145, issue 5, in 2017, published by the American Mathematical Society. DOI: 10.1090/proc/13359

Peer Reviewed



American Mathematical Society



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.