Document Type


Publication Date



In this paper we study reproducing kernel Hilbert and Banach spaces of pairs. These are a generalization of reproducing kernel Krein spaces and, roughly speaking, consist of pairs of Hilbert (or Banach) spaces of functions in duality with respect to a sesquilinear form and admitting a left and right reproducing kernel. We first investigate some properties of these spaces of pairs. It is then proved that to every function K(z, ω) analytic in z and ω* there is a neighborhood of the origin that can be associated with a reproducing kernel Hilbert space of pairs with left reproducing kernel K(z, ω) and right reproducing kernel K(ω, z)*.


This article was originally published in Rocky Mountain Journal of Mathematics, volume22, in 1992 DOI:10.1216/rmjm/1181072652

Peer Reviewed



Rocky Mountain Mathematics Consortium



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.