Document Type


Publication Date



Large weak values have been used to amplify the sensitivity of a linear response signal for detecting changes in a small parameter, which has also enabled a simple method for precise parameter estimation. However, producing a large weak value requires a low postselection probability for an ancilla degree of freedom, which limits the utility of the technique. We propose an improvement to this method that uses entanglement to increase the efficiency. We show that by entangling and postselecting n ancillas, the postselection probability can be increased by a factor of n while keeping the weak value fixed (compared to n uncorrelated attempts with one ancilla), which is the optimal scaling with n that is expected from quantum metrology. Furthermore, we show the surprising result that the quantum Fisher information about the detected parameter can be almost entirely preserved in the postselected state, which allows the sensitive estimation to approximately saturate the relevant quantum Cramér-Rao bound. To illustrate this protocol we provide simple quantum circuits that can be implemented using current experimental realizations of three entangled qubits.


This article was originally published in Physical Review Letters, volume 113, in 2014. DOI: 10.1103/PhysRevLett.113.030401

supplemental.pdf (289 kB)
Supplemental Material

Peer Reviewed



American Physical Society



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.