Document Type


Publication Date



Light Detection and Ranging (LiDAR) systems can be used to estimate both vertical and horizontal forest structure. Woody components, the leaves of trees and the understory can be described with high precision, using geo-registered 3D-points. Based on this concept, the Effective Plant Area Indices (PAIe) for areas of Korean Pine (Pinus koraiensis), Japanese Larch (Larix leptolepis) and Oak (Quercus spp.) were estimated by calculating the ratio of intercepted and incident LIDAR laser rays for the canopies of the three forest types. Initially, the canopy gap fraction (GLiDAR) was generated by extracting the LiDAR data reflected from the canopy surface, or inner canopy area, using k-means statistics. The LiDAR-derived PAIe was then estimated by using GLIDAR with the Beer-Lambert law. A comparison of the LiDAR-derived and field-derived PAIe revealed the coefficients of determination for Korean Pine, Japanese Larch and Oak to be 0.82, 0.64 and 0.59, respectively. These differences between field-based and LIDAR-based PAIe for the different forest types were attributed to the amount of leaves and branches in the forest stands. The absence of leaves, in the case of both Larch and Oak, meant that the LiDAR pulses were only reflected from branches. The probability that the LiDAR pulses are reflected from bare branches is low as compared to the reflection from branches with a high leaf density. This is because the size of the branch is smaller than the resolution across and along the 1 meter LIDAR laser track. Therefore, a better predictive accuracy would be expected for the model if the study would be repeated in late spring when the shoots and leaves of the deciduous trees begin to appear.


This article was originally published in Science China, Life Sciences, volume 53, issue 7, in 2010. DOI: 10.1007/s11427-010-4019-z

Peer Reviewed


Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.