Document Type


Publication Date



A join-semilattice L with top is said to be conjunctive if every principal ideal is an intersection of maximal ideals. (This is equivalent to a first-order condition in the language of semilattices.) In this paper, we explore the consequences of the conjunctivity hypothesis for L, and we define and study a related property, called “ideal conjunctivity,” which is applicable to join-semilattices without top. Results include the following: (a) Every conjunctive join-semilattice is isomorphic to a join-closed subbase for a compact T1-topology on max L, the set of maximal ideals of L, and under weak hypotheses this representation is functorial. (b) Every Wallman base for a topological space is conjunctive; we give an example of a conjunctive annular base that is not Wallman. (c) The free distributive lattice over a conjunctive join-semilattice L is a subsemilattice of the power set of max L. (d) For an arbitrary join-semilattice L: if every u-maximal ideal is prime (i.e., the complement is a filter) for every u ϵ L, then L satisfies Katriňák’s distributivity axiom. (This appears to be new, though the converse is well known.) If L is conjunctive, all the 1-maximal ideals of L are prime if and only if L satisfies a weak distributivity axiom due to Varlet. We include a number of applications.


This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Algebra Universalis, volume 51, in 2021 following peer review. The final publication may differ and is available at Springer via

A free-to-read copy of the final published article is available here.

Peer Reviewed




Included in

Algebra Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.