Document Type


Publication Date



Context: The Bodyblade Pro is used for shoulder rehabilitation after injury. Resistance is provided by blade oscillations—faster oscillations or higher speeds correspond to greater resistance. However, research supporting the Bodyblade Pro’s use is scarce, particularly in comparison with dumbbell training. Objective: To compare muscle activity, using electromyography (EMG), in the back and shoulder regions during shoulder exercises with the Bodyblade Pro vs dumbbells. Design: Randomized crossover study. Setting: San Diego State University biomechanics laboratory. Participants: 11 healthy male subjects age 19–32 y. Intervention: Subjects performed shoulder-flexion and -abduction exercises using a Bodyblade Pro and dumbbells (5, 8, and 10 lb) while EMG recorded activity of the deltoid, pectoralis major, infraspinatus, serratus anterior, and erector spinae. Main Outcome Measures: Average peak muscle activity (% maximum voluntary isometric contraction) was separately measured for shoulder abduction and flexion in the range of 85° to 95°. Differences among exercise devices were separately analyzed for the flexed and abducted positions using 1-way repeated-measures ANOVA. Results: The Bodyblade Pro produced greater muscle activity than all the dumbbell trials. Differences were significant for all muscles measured (all P < .01) except for the erector spinae during shoulder flexion with a 10-lb dumbbell. EMG activity for the Bodyblade Pro exceeded 50% of the MVIC during both shoulder flexion and abduction. For the dumbbell conditions, only the 10-lb trials approached this effect. Conclusions: Using a Bodyblade during shoulder exercises results in greater shoulder- and back-muscle recruitment than dumbbells. The Bodyblade Pro can activate multiple muscles in a single exercise and thereby minimize the need for multiple dumbbell exercises. The Bodyblade Pro is an effective device for shoulder- and back-muscle activation that warrants further use by clinicians interested in its use for rehabilitation.


This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Journal of Sport Rehabilitation, volume 21, issue 3, in 2012.

Peer Reviewed



Human Kinetics



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.